CSCSTI 39.23
Many of the known impact structures have been discovered by analyzing characteristic morphological features using geoinformation systems and remote sensing data. Satellite data and GIS capabilities allow for interpretation, visual assessment of meteorite craters, and presentation of morphological features of objects. However, obvious morphological expressions do not always correspond to structural forms. Morphological features of many geological objects, clearly visible when analyzing satellite images and displayed on maps, may be completely unobvious when passing field routes and conducting visual surveys. This is relevant for identifying many astroblemes. Among the huge number of astroblemes, only a small part of them has obvious morphological features. Impact structures have different preservation – deformation features, degree of surface destruction, burial conditions, and topographic openness. As a result of conducting a full cycle of research works on studying geomorphology, lithology, petrography, conducting field work including passing routes, conducting surveys, sampling and subsequent office processing, it becomes possible to diagnose the genesis of asteroid craters. Using the example of meteorite craters, it is possible to trace the tasks of decoding ring structures of varying degrees of complexity. Well-preserved ring structures are examples of data visualization and visual representation of surface relief.
terrain, satellite data, geomorphological features, field research methods, ring structures, astroblem, analytical hillshading, depiction of landforms on maps
1. Gurevich D.V. Kol'cevye struktury: vazhneyshie mehanizmy obrazovaniya // Regional'naya geologiya i metallogeniya. 2009. № 39. C. 14–23.
2. Becker L., Poreda R.J., Basu A.R., et al. Bedout: A possible end-Permian impact crater offshore of Northwestern Australia // Science. 2004. Vol. 304. No. 5676. P. 1469–1476. DOIhttps://doi.org/10.1126/science.1093925.
3. Macdonald F.A., Bunting J.A., Cina S.E. Yarrabubba – a large, deeply eroded impact structure in the Yilgarn Craton, Western Australia // Earth and Planetary Science Letters. 2003. Vol. 213. No. 3-4. P. 235–247. DOIhttps://doi.org/10.1016/S0012-821X(03)00322-4.
4. Erickson T.M., Kirkland C.L., Timms N.E., et al. Precise radiometric age establishes Yarrabubba, Western Australia, as Earth’s oldest recognised meteorite impact structure // Nature Communications. 2020. Vol. 11. No. 1. P. 300. DOIhttps://doi.org/10.1038/s41467-019-13985-7.
5. Meschede M., Warr L.N. Asteroid Craters // The Geology of Germany. Regional Geology Reviews. Springer, Cham. 2019. P. 251–257. DOIhttps://doi.org/10.1007/978-3-319-76102-2_15.
6. Kenkmann T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more // Meteoritics & Planetary Science. 2021. Vol. 56. No. 5. P. 1024–1070. DOIhttps://doi.org/10.1111/maps.13657.
7. Kennelly P., Kimerling A.J. Modifications of Tanaka’s Illuminated Contour Method // Cartography and Geographic Information Science. 2001. Vol. 28. No. 2. P. 111–123. DOIhttps://doi.org/10.1559/152304001782173709.
8. Chiba T., Kaneta S., Suzuki Y. Red Relief Image Map: New visualization method for three dimensional data // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2008. Vol. 37. Part B2. P. 1071–1076.
9. Chiba T., Hasi B. Ground surface visualization using Red Relief Image Map for a variety of map scales // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016. Vol. 41. Part B2. P. 393–397. DOIhttps://doi.org/10.5194/isprsarchives-XLI-B2-393-2016.
10. No T., Hiramatsu T., Sato T., et al. Red relief image map and integration of topographic data in and around the Japan Sea // JAMSTEC Report of Research and Development. 2016. Vol. 22. P. 13–29. (In Japanese). DOIhttps://doi.org/10.5918/jamstecr.22.13.
11. Samsonov T. Granularity of Digital Elevation Model and Optimal Level of Detail in Small-Scale Cartographic Relief Presentation // Remote Sensing. 2022. Vol. 14. No. 5. 1270. DOIhttps://doi.org/10.3390/rs14051270.
12. Sparavigna A.C. Craters in Maps given by Spaceborne Digital Elevation Models. 2022. [Elektronnyy resurs]. Rezhim dostupa: https://hal.archives-ouvertes.fr/hal-03607208 (data obrascheniya: 29.09.2024).
13. Douglass N.A.K., Fish C.S. That’s a Relief: Assessing Beauty, Realism, and Landform Clarity in Multilayer Terrain Maps // Cartographic Perspectives. 2022. No. 100. P. 43–66. DOIhttps://doi.org/10.14714/CP100.1727.
14. Schmieder M., Seyfried H., Gerel O. The circular Uneged Uul structure (East Gobi Basin, Mongolia) – Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target? // Journal of Asian Earth Sciences. 2013. Vol. 64. No. 5. P. 58–76. DOIhttps://doi.org/10.1016/j.jseaes.2012.11.042.
15. Amgaa T., Mader D., Reimold W.U., et al. Tabun Khara Obo impact crater, Mongolia: Geophysics, geology, petrography, and geochemistry // Large Meteorite Impacts and Planetary Evolution VI: Geological Survey of America. Reimold W.U., Koeberl C. (eds.). 2021. Vol. 550. P. 81–132. DOIhttps://doi.org/10.1130/2021.2550(04).
16. Cohen K.M., Finney S.C., Gibbard P.L., et al. The ICS International Chronostratigraphic Chart // Episodes. 2013. Vol. 36. No. 3. P. 199–204. DOIhttps://doi.org/10.18814/epiiugs/2013/v36i3/002.
17. Komatsu G., Olsen J.W., Ormö J., et al. The Tsenkher structure in the Gobi-Altai, Mongolia: Geomorphological hints of an impact origin // Geomorphology. 2006. Vol. 74. No. 14. P. 164–180. DOIhttps://doi.org/10.1016/j.geomorph.2005.07.031.
18. Komatsu G., Ormö J., Bayaraa T., et al. The Tsenkher structure in the Gobi-Altai, Mongolia; preliminary results from the 2007 expedition // 39th Lunar and Planetary Science Conference (Lunar and Planetary Science XXXIX) (League City, Texas, March 10–14, 2008). 2008. No. 1391. P. 1622.
19. Komatsu G., Ormö J., Bayaraa T., et al. Further evidence for an impact origin of the Tsenkher structure in the Gobi-Altai, Mongolia: Geology of a 3.7 km crater with a well-preserved ejecta blanket // Geological Magazine. 2019. Vol. 156. No. 1. P. 1–24. DOIhttps://doi.org/10.1017/S0016756817000620.
20. Saltykovskiy A.Ya., Cel'movich V.A., Bayaraa T. i dr. Impaktnyy krater i sostav kosmicheskogo veschestva v rannepaleozoyskoy strukturnoy zone Yuzhnoy Mongolii // Materialy HII Mezhdunarodnoy konferencii «Fiziko-himicheskie i petrofizicheskie problemy v naukah o Zemle» (Moskva, 3–5 oktyabrya 2011 g.; Borok, 6 oktyabrya 2011 g.). M., 2011. C. 274–279.
21. Saltykovskiy A.Ya., Nikitin A.N., Cel'movich V.A. i dr. Impaktnyy krater i sostav kosmicheskogo veschestva v Central'noy Azii. 2012. P. 1–16. DOIhttps://doi.org/10.13140/RG.2.2.17623.68003.
22. Cel'movich V.A. Samorodnye metally i kosmicheskie mineraly iz astroblemy Cenher // Mineraly: stroenie, svoystva, metody issledovaniya: materialy IV Vserossiyskoy molodezhnoy nauchnoy konferencii (Ekaterinburg, 15–18 oktyabrya 2012 g.). Ekaterinburg: Institut geologii i geohimii UrO RAN, 2012. C. 257–259.
23. Goudie A. Arid and Semi-Arid Geomorphology. Cambridge University Press, 2013. 454 p.
24. Beresneva I.A. Klimaty aridnoy zony Azii / otv. red. P.D. Gunin. M.: Nauka, 2006. 286 s.
25. Heiner M., Batsaikhan N., Galbadrakh D., et al. Towards a National GIS Model to Map Terrestrial Ecosystems in Mongolia: A Pilot Study in the Gobi Desert Region // Proceedings of the Trans-disciplinary Research Conference: Building Resilience of Mongolian Rangelands (Ulaanbaatar, Mongolia, June 9–10, 2015). Ulaanbaatar, 2015. P. 24–34. [Elektronnyy resurs]. Rezhim dostupa: https://mountainscholar.org/items/ f270edf3-2db1-47f5-91a4-b1fd6d8367e4 (data obrascheniya: 29.09.2024).
26. Reynard E., Coratza P., Regolini-Bissig G. Geomorphosites. Munchen: Verlag Dr. Friedrich Pfeil, 2009. 240 p.